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A positional control, restricted in modulus, which steers a large system from a bounded domain of phase 

space into a specified neighbourhood of the origin of coordinates is proposed. The sufficient conditions that 

pick out the set of systems which allow this transition are obtained; the necessary time of motion is 

estimated, and numerical examples are given. This paper continues the investigation of positional control 

laws for large dynamical systems under the action of geometrically constrained control described in [l, 2] 

and is related to [3-6]. 

THE DYNAMICAL system under the action of a control restricted in magnitude 

x’=Fx+Gu, lUl< 1, XER”, UERrn (1) 

is considered. Here F and G are the corresponding matrices of the phase state and control. They satisfy the 
condition of complete controllability [7] 

rankIIG,FG,F’G ,..., F”-‘Gll=n (2) 

Let the bounded domain of acceptable initial positions of system (1) 

Ix,1 CR,, R, = const > 0. (3) 

be specified. 
It is required to design a positional control U(X, z), restricted in magnitude 1~1 Cl, such that it steers the 

system from any point of domain (3) into a specified neighbourhood 

x’S,x<R;, R, =const>a (4) 

of the origin of coordinates, ST being a specified positive definite matrix. 
Assume that domain (3) is not contained in domain (4). This is equivalent to the inequality 

R; >R: II ST II-’ (5) 

We will consider two versions of the positional control 

I.@, t) = ki(t) G ‘Si (t) x 

ki (t) = -Ri’ II G’ It -’ II Si(t) II --lli (6) 

Here k,(r) (i = 1, 2) are scalar functions of time, and [/G’(r)[/ and \&(t)// are Euclidean norms of the 
matrices GT and Si(t). 

Let the matrix &(t) in the control law (6) be specified by the condition 

(XTSj@)X) = 0, S,(T) = s, (7) 

The derivative with respect to time is calculated using the system obtained after substituting control (6) into 
equation of motion (1). Then 

XT @j(S,, Sj)X = 0 (8) 

@i(S), Si)sSi +2ki(t)SiGGTSi+SiF+FTSi 
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Equality (8) holds for any x and hence the matrix S, satisfies the equation with the boundary condition 

Qi(Sj, Si)=O. Si(T)=S, 19) 

From relation (7) it follows that system (1) will pass, under the action of control (6). from any position \,: 
belonging to the domain 

X,TSi(t)Xg <R: ilf!, 

to the desired position (4) in a time T-- t,. 

Lemma 1. Let RI (3), R2 (4) and the matrix &Cl,) be related by the condition 

The control ui(x. t) being realized on trajectories then admits of the estimate 

I u1 0;. t) I G maxr II S, (f,) 1% II S,(t) II-’ 
(I.!) 

I u, (x, t) I Q 1, t E [fj, T]) i = 1,2 

and guarantees the transition of system (I) from any point of domain (3) into the specified neighbourhood (4) 
of the origin of coordinates in a time T- ti. 

Proof. We will estimate the value of the control u,fx, t) on the trajectories which start in domain (IO). The 
definitions of controls (5) imply the inequality 

I ui (x. t) I < max,, t II GT Sj (r) x ll/(Ri /I G” II II Si II I’ i, (13) 

The maximum is calculated over all values of x and t which satisfy the conditions xrS,(r)~< R$ and 7% ra r, 
One can prove that 

maxx II Si (t)~ II = II Si (i) II’R, for x1‘ Si (t) x < Rz 

If we substitute this expression fk i = 2 into inequality (13), we obtain estimate (12) of the magnitude of the 
control uz(x, t) on the trajectories starting in domain (10). Similarly, we have the estimate 

for u1 (x. r). 

Iu,~x’,:,t)16maxt~R,/~US,(t)l141R,)), t, <f4T 

Estimate (12) follows from this inequality and relation (11); the latter implies that domain (3) belongs to 
domain (10). 

Equation (7) and condition (11) imply the sequence of relations 

fxTSTx)=(x~Si(ti)xg)~/~g~’ HaS’~{ti)l~<R: ii;si(ti)iI=R: 

Condition (4) is satisfied, which proves the second assertion of the lemma. 
Let us write the equation which specifies Ils,(t)ll. We put S; = V,-’ in Eq. (9). Then the equality 

$ = V;’ V,V;’ holds. As a result, we obtain the equation and the boundary condition which are satisfied by 
the matrix function 

T-f 
Vi(t)=exp(F(t-T))(S~‘+ Ri’ .f I(~)I~:‘~(~)~~)~xP(~‘(I-T)) 

0 

I (I) = 2 II CT !I-’ exp (F#) GG’ exp (FTg) 

L~~(E)‘I~S~(T-F)II-‘=~~~~Z~V~(T-T)I, lZl=l 

( 14) 

This may be verified by substitution. 
Let us consider the “inverse“ time r = T- t. Using (14) we obtain the integral equation for Pi 

Cli(7)=minllTWj(7,P:li(.), Ri){ (15) 

where W,(r, pjii( .), R, is the right-hand side of relation (14), and the dot in the expression p,( .) denotes the 
fact that Wj depends on values of pi(t) in the interval (0. T). 

We will estimate the rate of increase of P,(T) as T+ ~0. To do this, we will write r in the form r = N4 C E 
where 0s EC A, A = const > 0 and N is an integer. We write the integral on the right-hand side of Eq. (15) as 
the sum of N integrals and introduce the new variable 5 of integration by the formula 5 = ;A + <,06 [<A. )’ = 0, 
3.2, . . We then have 
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N-1 A 
g, (7) = minf ZTexp(-F7) [S;’ + R ;’ C l :(iA+f)~,tiA++)dt+ 

j=O 0 
(16) 

We will find a lower bound for inf &i (jA + 13, [E [O, A). To do this, we consider N values of j+ (j = 0, 1, 
. . . , N - 1) specified recurrently below such that 

0 < g ri < infr g, ti A + c), 0 G 5 < A 

From Eq. (16) and the de~nition of pij we have 

p 1~ (7) = II exp (Fr) II 4 II ST II -’ + Co C 
i. = 0 

HIi II exp(F(T -jA)) II-’ (17) 

where Co>0 by virtue of condition (2) of complete controllability [7]. Assume that the eigenvahres hk of the 
matrix F (1) with the largest real parts (Y have simple elementary divisors (assumption A). Then for ra 3, the 
limit [S] 

holds. 

lieXp[F(7-Ti))IIgCexpQ(r-~~), 7’>Ti, C>O (18) 

Suppose that the homogeneous system (1) is stable. Due to the stability of the system, either assumption A is 
valid and a = 0 or the condition (Y < 0 holds ]&I. In any case, a limit of the form (18) hoids, and the minimum of 
the right-hand side of the inequality which is obtained by substituting this estimate into relation (17) is attained 
at r = NA. Thus, we obtain the recurrent relation 

g,(~)a~l~=C~exp(-2aAN)+ 

N-l 
+ C, isO bljexP(2aA (i -N)), f E IN4 (N + 1) A) (19) 

c, = P II ST ll-1 > 0, c, = c*c-” > 0 

Equation (19) has the solution 

&lo = c,, ~lN=Clexpp(expp+C,)N-l 

N& 1, p=--2aA>O (20) 

It is impossible to sum the relations for I.LZN (N = 1,2,3, . . .) similar to the recurrent equations (19), because 
for i = 2 the quantity ~~(5) occurs non-linearly on the right-hand side of Eqs (15). But we note the following 
fact. Let the instants ri = T- ti (i = 1,2) be the minimum positive roots of the following equations 

U/ (ri) = II St (ti) II -’ = R f R;’ (21) 

which ensure that conditions (11) are satisfied. The estimate ~l(q)%rna~r~,(~), ~13720 and, hence, the 
estimate of the magnitude of controI(1) follows from the fact that the root ri is a minimum and inequality (5) 
holds. 

Equalities (21) and the relation y~‘2(&)<R1RS1 for q>530 ensure the limit ~l(~)R~l<~~‘z(~)R~i. This 
fact and Eqs (15) for i = 1,2 imply the inequality ~~(7) > pl (T) for 12 3 r> 0, and, as a consequence, the limit 

71 ’ 72 (22) 

holds. 
The limits (19) and (20) of the rate of increase in pi(r) as T-+ m and inequality (22) imply the following 

lemma. 

Lemma 2. Let system (1) be completely controllable and let the corresponding homogeneous system be 
stable. Then instants ti (j = 1,2, tl < t2< 7’) exist which satisfy relations (21). 

The next theorem fohows from Lemmas 1 and 2. 
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Theorem. Suppose system (I) is completely controllable and the corresponding homogeneous system ix 
stable. Then instants t, (i = 1, 2) exist for any point of domain (3) of the initial positions of system (I) which 

satisfy relation (21) and are such that controls (6) u,(x. I) (i = I. 3. fE [t,, T]) restricted in magnitude. namely. 
111,(x, r) 1 d 1, steer system (1) from any point of domain (3) to the specified neighbourhood (4) of the origin of 

coordinates in a time 7, = T- t,. T, > T?. respectively. 

Remark. The conditions of Lemma 2 guarantee the existence of the instants tj satisfying relations (21). If the 
existence of these instants can be proved in another way, for instance, numerically, then all the statements of 
the theorem will also be satisfied. 

Examples. Equation (15) was solved numerically using a “predictor-corrector” difference scheme of the 
second order of accuracy. The integration was carried out up to the first instant 7; when conditions (21) are met. 
The matrix s,(t) = V,-‘(t) was computed from Eq. (14) simultaneously when solving Eq. (15). Then the 

motion of the system was simulated using the control law (6) and the matrix S, The results of computations 
showed that the control law (6) for i = 2, is much more effective in speed of response than the same law for 

i = 1. For this reason, the results discussed below relate only to the second law of control. It was required to 

steer the system to the final state /x, 1 s 0.1 in all the examples given below. Small circles denote the positions of 

the system after 2 s in the phase planes of Figs 1 and 2. The initial points of trajectories correspond to the initial 

positions of the system. 

The phase trajectories of the system x’i = x2, .Y ‘? = u are shown in Fig. 1. The system is unstable but :I 

solution t2 exists for all RI and RZ. 
The phase trajectories of the system x’i = x2. x*? = -x, + II are shown in Fig. 2. The computations show that 

the time taken to transfer from any point of the domain of radius RI = 2.1 into the domain of radius R1 = 0.1 
under the action of control (6) is not greater than 6.1. The guaranteed time taken to steer the system from any 
point of the domain of radius RI = 2.1 into the specified domain of radius R2 under the action of restricted 

control (1) is equal to r. 
Consider the pendulum whose point of suspension can move along the horizontal guiding line with a velocity 
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IV 
FIG. 3. 

that is restricted in magnitude. We will assume that the velocity of the point of suspension can vary within the 
specified limits almost instantaneously. The equations of motion of such a system are written in the form 

. 
x , = u, .x; = x3, xj = -x3 + u [lo]. The variable x2 has the meaning of the absolute dimensionless velocity of 
the weight, and xs is the angle of deflection of the pendulum from the vertical. Graphs of the variations of the 
phase coordinates as a function of time are shown in Fig. 3. The numbers on the curves correspond to the index 
of the space variable. The control function u(t) is shown by the dashed line with the following initial condition: 
X,(O) =x3(0) = 0, X*(O) = 3. 

The value of the control fluctuates within the specified limits and does not tend to zero as t+ T. 

Remark. It is interesting to compare the control (6) at i = 2, with the control which realizes the optimal 
synthesis in the problem of steering the dynamical system X* = Fx + Gu to the origin of coordinates in a fixed 
time Tin the case of a functional that is quadratic with respect to the control. It is well known [7] that the 
solution of the latter problem yields a control that is linear with respect to the phase coordinates with a 
feedback matrix which depends on the time needed to complete the motion. 

Let system (1) be completely controllable (21, let the corresponding homogeneous system (1) be stable and 
let LY = 0 (18). It has been shown [l] that in this case, in order for the condition that control (1) is bounded to be 
satisfied, the time T of motion must be greater than a certain quadratic function of the radius RI of domain (3) 
of the initial positions of the system. It may be obtained from a recurrent equation similar to Eq. (19) for i = 2, 

that the value of PzN (19) exceeds a quadratic function N (N = 1,2, 3, . . .) under the same assumptions. From 
Eq. (21) it therefore follows that the time 72 needed to move into an arbitrary fixed neighbourhood of the origin 
of coordinates, corresponding to control (6) for i = 2, does not exceed a linear function of RI. Therefore, the 
radius of Rt of the domain of possible initial states of system (1) is sufficiently large, control (6) for i = 2 is more 
effective in its speed of response than the mode of the motion discussed in [l]. 
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